Prediksi Jumlah Siswa Baru Pada SMK Negeri 2 Buton dengan Metode Regresi Linier dan Exponential Smoothing
DOI:
https://doi.org/10.55340/japm.v10i1.1517Keywords:
prediction, linear regression, exponential smoothingAbstract
The role of education is very important in a nation because education is a top priority today. Education plays an important role in creating an intelligent and wise Indonesian state and nation. Education is carried out with the aim of improving the quality of people's lives and increasing the nation's competitiveness. To support the creation of quality education, adequate facilities and infrastructure are needed. SMK Negeri 2 Buton is an educational facility in Buton district, Southeast Sulawesi. SMK Negeri 2 Buton is experiencing problems in providing facilities such as the number of tables, chairs, etc., one of the main causes is the difficulty of knowing the number of students who will register in the coming year. Linear regression and exponential smoothing are methods that can be used to predict new students by utilizing past admissions data. So, the aim of this research is to predict the number of new students at SMK Negeri 2 Buton by utilizing linear regression and exponential smoothing. The data used in the research is new student data from 2011 to 2023. Application of new student predictions using linear regression and exponential smoothing methods at SMK Negeri 2 Buton shows a good prediction value, namely less than 21%. This means that the prediction method results are closer to the actual number of new student admissions. Prediction testing shows that the exponential smoothing method produces a smaller MAPE value than the linear regression method with a difference of 3.8%
Downloads
References
Ahmad, R., & Arifin, Z. (2018). Metode Regresi Linier Untuk Memprediksi Jumlah Pendaftar Calon Mahasiswa Baru Universitas Islam Indragiri. Jurnal Analisis Manajemen, 4(2), 86–92.
Anggie, A. (2018). Implementasi Metode K-Nearest Neighbor Dan Regresi Linear Dalam Prediksi Harga Emas. Pemodelan Arsit. Sist. Inf. Perizinan Menggunakan Kerangka Kerja Togaf Adm, 4(1), 113.
Attanayake, A., Perera, S., & Liyanage, U. (2019). Combining forecasts of ARIMA and exponential smoothing models. Advances and Applications in Statistics, 59(2), 199–208.
Ena, M. (2023). Penerapan Metode Single Exponential Smoothing Dalam Memprediksi Jumlah Penerimaan Mahasiswa Baru. Jurnal Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 4(2), 962–969.
Herwanto, H. W., Widiyaningtyas, T., & Indriana, P. (2019). Penerapan Algoritme Linear Regression untuk Prediksi Hasil Panen Tanaman Padi. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 8(4), 364–370.
Prasetyo, V. R., Lazuardi, H., Mulyono, A. A., & Lauw, C. (2021). Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Regresi Linier. Jurnal Nasional Teknologi Dan Sistem Informasi (TEKNOSI), 7(1), 8–17.
Pratista, S., Nazir, A., Iskandar, I., Budianita, E., & Afrianty, I. (2023). Perbandingan Teknik Prediksi Pemakaian Obat Menggunakan Algoritma Simple Linear Regression dan Support Vector Regression. Building of Informatics, Technology and Science (BITS), 5(2), 456–465.
Sulthan, N., Eltivia, N., & Riwajanti, N. I. (2020). Implementasi Metode Exponential Smoothing Untuk Peramalan Kedatangan Wisatawan Mancanegara Pada Pulau Bali. Media Mahardhika, 18(2), 171–178.
Wibowo, A., Iskandar, D., & Wibowo, W. A. S. (2023). Data Mining Dalam Prediksi Jumlah Pasien Dengan Regresi Linear Dan Exponential Smoothing. Jurnal Sistem Informasi Dan Sains Teknologi, 5(1)